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1. Introduction  

 

Neural signal-based human-computer interfaces (HCIs) have 

been of huge interest and some cases have demonstrated the 

capability of the approaches successfully. Extracting users’ 

intentions through noninvasive sensory equipment provides 

information related to body movements faster than kinematic and 

dynamic sensory devices such as force sensors and motion trackers. 

Electromyography (EMG) is one of the most interesting neural 

signals to detect user’s intentions because it can be measured online 

achieving an acceptable signal-to noise ratio under current 

technologies. Surface EMG (sEMG) is measured on the skin 

noninvasively by electrical voltages which represent neuromuscular 

activities generated in muscles during their contraction. The 

activities are known to be discriminated according to intended 

behaviors.1,2 Some investigations have challenged to develop 

noninvasive sEMG-based interface techniques based on the 

fundamental properties of EMG. Some used EMG signals from 

eyebrows and jaw movements,3 from arms,4,5 and from legs.6 To 

cope with users’ desired commands (i.e., the direction of 

movements) in natural manner, sEMG signals from arms may be 

most appropriate because the interface protocol is intuitive enough 

to be familiarly operated. Furthermore, even the disabled and the 

elderly can use the sEMG-based interface to assess a controlled 

device without much training. Among the disabled, people with 

bilateral hand amputations and Spinal Cord Injuries (SCIs) at C6-

C7 functional levels could use their residual and controllable limbs. 

Due to its potential advantages, sEMG-based interfaces have been 

attempted to various applications: teleoperation, exoskeleton, 

computer interface, manipulation, fatigue estimation.2,7-11 However, 

there has been no attempt which applies a sEMG-based interface to 

control an independent agent such as a humanoid robot in a 

concrete practical scenario to the best of our knowledge. 

This work presents humanoid robot navigation control by 

extracting users’ intentions through light and wearable sEMG 

sensors and wireless remote communication between a user and a 

robot. Furthermore, we propose to integrate a finite state 

automation scheme to extend the number of discriminated 

intentions. To be practically usable, all processing procedures can 

be run in real-time without perceptible delay time. 

This paper is organized as follows. The components of the 

proposed method are explained in next section. Section 3 reports 

the experiment procedure and its results, and Section 4 concludes 

this paper. 
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This paper presents an application of noninvasive sEMG-based interface to humanoid robot navigation control between 

remote places via wireless internet communication. sEMG signals to recognize three wrist movements are measured from 

the skin of a user’s arm. The wrist movements generate commands to the humanoid robot. The wrist movement directions 

are assigned to be intuitively comparable with the robot movement directions, therefore a user can control the robot in a 

natural way. By combining the state automation machine to the sEMG-based interface, possible robot movements are 

extended. To provide the environmental information of remote places, the images from the camera on the robot’s head are 

transmitted into the interface PC screen. We conducted experiments in which subjects control a humanoid robot to navigate 

from a starting position to a destination in a maze. The experimental results demonstrate the feasibility of the proposed 

interface method by comparing it with the keyboard control. 
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2. Methods 

 

2.1 Overall system architecture 

Fig. 1 illustrates the proposed system architecture. Each user sat 

in front of a PC screen with surface electrodes attached in a place. A 

PC near the user ran the sEMG signal processing and pattern 

recognition algorithm while receiving muscle signals from the 

sensors. The user used wrist movements to generate commands to a 

humanoid robot looking at the vision images transferred from a 

camera vision of the humanoid robot. In real time, the user 

recognized the robot’s state based on the vision information, and 

generated appropriate wrist movement to produce a command to the 

robot. The wrist movement was detected through sEMG electrodes, 

and the muscle signal was classified to select an adequate motion 

command to the robot. 

The humanoid navigation system was located in the other place 

separately. The wireless TCP/IP transferred all information between 

the robot system and user. The humanoid robot was equipped with a 

camera (X-cam RCW-1000, iNovia Inc.) on the top of its head to 

provide visual feedback to the user. To overcome narrow view 

range, the robot could turn its head left or right by commands from 

the user. 

The sequential subsections explain system components in detail 

separately. 

 

2.2 Motion and muscle selection 

The motions and target muscles to be used to control the robot 

must be selected by taking into account the easiness of mapping the 

signals to robot operating commands as well as the clear 

observability of the signals on the skin surface. To map the signals 

to the commands, three different wrist movements (wrist flexion, 

wrist extension, and ulnar deviation) were chosen as shown in Fig. 

2 (top), and these movements were mapped to the commands 

(“Left”, “Right”, and “Forward”). The commands “Left” and 

 

“Right” turned the robot’s head to the left and right respectively. 

The command “Forward” ordered the forward walk or body turn of 

the robot. 

The user can intuitively control the humanoid robot through 

these movements because the direction of the wrist movement 

corresponds to the direction of the movement of the robot. To 

observe the movements, three muscles that produce the chosen 

wrist movements were selected. Their activities were easily 

observable on the skin surface: the flexor carpi ulnaris (FCU), the 

extensor carpi radialis (ECR), and the extensor carpi ulnaris (ECU) 

as shown in Fig. 2 (bottom). 

 

Fig. 2 (top) Wrist movements, and (bottom) sEMG electrodes’ 

locations 

 

Fig. 1 Overall system architecture 



INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING   Vol. 12, No. 6 DECEMBER 2011  /  1107

 

2.3 sEMG signal processing and pattern recognition 

We placed three bipolar, noninvasive surface electrodes (DE-2.1, 

Delsys, U.S.A.) with built-in amplifiers over the target muscles 

using medical adhesive tape. The electrodes were connected to a 

data acquisition board (PCI 6224, National InstrumentsTM, U.S.A.), 

and signals were sampled at 1000 Hz. The sampled data were 

rectified and smoothed using the mean absolute value (MAV) with a 

200-msec window that moved every 100 ms.12 A personal computer 

(Pentium 4, 2.4 GHz processor) and Microsoft Visual Studio 2005 

were used for the experiment.  

The maximal voluntary contraction (MVC) of each muscle was 

measured prior to the experiment, and the MAVs of the sEMG 

signals were then normalized to one using MAVs of MVC 

(normalized MAV, or NMAV). An IF-Then Rule algorithm was 

used to classify the control intentions of the user. First, the muscle 

with the greatest activation was selected by comparing magnitudes 

of NMAVs among the three muscles. Second, when NMAV from 

the selected muscle was greater than 10% of its MVC, each 

designated command was generated with respect to the selected 

muscle. The high NMAVs (>10% of MVC) from FCU, ECR, and 

ECU triggered the commands, “Left”, “Right”, and “Forward” 

respectively. 

 

2.4 Humanoid navigation system and control 

A Nao humanoid robot (Aldebaran Robotics Inc., France)13 

with 25 degrees of freedom is the robot platform used in this work. 

A monocular vision on its head captured a front view. Thus, the user 

could see what the robot saw on the PC screen while controlling the 

robot using the sEMG control system. The robot can execute 

walking forward, turning, and head rotation. To secure its stability, 

the robot was programmed to not walk or turn itself during 

observing its environment by rotating its head. The robot walked at 

a speed of 3.3 cm/s and made turns at speed of 0.13 rad/s. 

We applied the state automation diagram to control the robot 

motions with three commands from sEMG. Fig. 3 illustrates the 

state automation diagram used in this work. Five motions were 

programmed to control the robot. The robot could rotate its head to 

the left or right up to 90 degrees maximally. While the robot stayed 

still, either a “Left” or “Right” command made the robot turn its 

head by three degrees. On the other hand, while the robot moved, 

either a “Left” or “Right” command stopped the robot. If the robot 

looked straight ahead and the command from the sEMG signal was 

“Forward”, it walked straight until “Left” or “Right” command 

occurred. Otherwise, it made the robot turn its body to be aligned 

with the head. 

 

2.5 Communication 

As already mentioned, the user and humanoid robot were in 

different places and the communication between the two was 

carried out through the wireless TCP/IP. The motion commands 

were transferred every 100ms to the robot from the user through the 

wireless communication. The visual images are measured at 5 fps, 

and transferred every 200ms to a PC near the robot through the 

wired USB connection. Then, the PC sent the images to the user 

through the wireless communication. 

 

Fig. 3 State automation diagram 

 

  

 

Fig. 4 (top) Experimental setup and robot navigation maze setting, 

and (bottom) remote communication 

 

 

3. Experiments 

 

3.1 Subjects 

Three healthy male subjects were volunteered with an average 

age of 27.3 years for the experiment. The KAIST Institutional 

Review Board approved the experimental protocol and the 

publication of this study. All participants reported no history of 

upper extremity or other musculoskeletal complaints, and 

participants were fully informed of the details of the experimental 

procedure. 

 

3.2 Experimental protocol 

Subjects were comfortably seated on a chair in front of a 

monitor. The MVC of each muscle was measured prior to the 
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experiment. The examiners offered verbal encouragement while all 

subjects were attempting to reach the MVC. The subjects were 

instructed to produce a series of three MVCs as rapidly as possible 

and to maintain each one for 3 sec. The peak MAV of the MVCs 

from the five trials was recorded. In addition, the subjects were 

instructed to rest both forearms for 20 sec. to determine the MAV 

during non-contraction of the muscles. Using the three wrist 

movements, the subjects were asked to navigate the Nao humanoid 

robot from a starting position to an end position via waypoint 

regions in an indoor maze (see Fig. 4). The maze size was 1.5 m 

(width) x 3 m (length). The route was guided by arrow signs on the 

environment. Looking at the signs through the visual feedback on 

the PC display, the subjects could decide appropriate robot motions 

by moving his or her wrist. The experimental setup is shown in Fig. 

4. The experiment consisted of eight trials in total for each subject 

(four trials: sEMG and four trials: keyboard). The subjects and 

robot were placed at two different locations which are about 0.8 km 

away on the KAIST campus.  

 

3.3 Experimental results 

Fig. 5 illustrates the robot’s travelled pathways in the maze 

during a subject conducted the humanoid navigation experiments 

with the sEMG-based and keyboard controls each five times 

respectively. In addition, some snapshots during experiments are 

included in Fig. 5. The results demonstrate the robot navigated 

along fairly reasonable pathways without seriously losing direction 

through the sEMG-based interface control. Table 1 summarizes the 

humanoid navigation performances through both sEMG-based and 

keyboard controls using the following metrics over each task trial; 

1) Forward Steps: the number of walking steps during forward 

movement; 2) Turning Steps: the number of walking steps to turn 

the robot body; 3) Head Movement: the total turning angle of the 

robot head to explore the surrounding environment (in degrees); 4) 

Time: total time taken to accomplish the task (in sec); 5) Travelled 

Distance: distance traveled to accomplish the task (in centimeters); 

6) Collisions: the number of collisions with the wall. 7) Transitions: 

the number of transitions between walking and exploration modes. 

It is clearly shown that all subjects performed similarly between 

the two control protocols. In terms of time consumption and 

travelled distance, the averaged ratios between the two controls 

were 0.951 and 0.966 respectively. All other factors such as forward 

or turning steps, and head movements, and state transitions 

demonstrate the similar results. The averaged ratios of the factors 

between the two controls were at least above 0.93. Based on this 

analysis, the performance of the sEMG-based control is comparable 

with that of the manual control. This seems a promising result for 

the disabled and the elderly; they may be able to control a robot or a 

machine as well as healthy people if we assume that they can 

control their residual limbs such as wrist. 

Fig. 6 shows raw sEMG profiles measured from the three 

locations on a subject’s arm during an experiment trial of the 

subject and NMAV profiles computed from the sEMG signals in 

real time. Based on the NMVA detection, commands to the robot 

were selected as shown in the bottom of Fig. 6. It is easily seen that, 

walking forward, left turn, walking forward, right turn, walking 

Fig. 5 Experimental results 

 

Table 1 Summary of the performance comparison between the sEMG-based and keyboard controls (averaged over trials) 

  

Forward 

Steps 

(times) 

Turning 

Steps 

(times) 

Head 

Movement

(degrees) 

Time 

(sec) 

Travelled 

distance 

(cm) 

Collisions 

(times) 

Transitions

(times) 

Subject 1 

Keyboard 
108.3 

(± 1.5) 

51.5 

(± 9.8) 

466.5 

(± 89.7) 

339.8 

(± 13.3) 

387.5 

(± 5.1) 

0.8 

(± 0.5) 

19.8 

(± 4.9) 

sEMG 
112.8 

(± 1.7) 

51.8 

(± 4.0) 

477.0 

(± 29.7) 

334.8 

(± 9.5) 

404.5 

(± 7.1) 

0.5 

(± 0.6) 

19.8 

(± 3.8) 

Subject 2 

Keyboard 
118.3 

(± 5.3) 

56.8 

(± 5.1) 

471.8 

(± 14.6) 

363.3 

(± 31.0) 

423.7 

(± 19.5) 

0.0 

(± 0.0) 

24.0 

(± 5.4) 

sEMG 
124.0 

(± 3.4) 

60.0 

(± 8.2) 

513.3 

(± 72.8) 

391.3 

(± 41.3) 

431.2 

(± 25.1) 

0.0 

(± 0.0) 

21.5 

(± 4.7) 

Subject 3 

Keyboard 
119.3 

(± 6.3) 

54.5 

(± 2.5) 

463.5 

(± 21.8) 

362.3 

(± 21.8) 

429.0 

(± 21.1) 

0.3 

(± 0.5) 

19.5 

(± 1.9) 

sEMG 
124.5 

(± 7.6) 

57.5 

(± 7.2) 

487.3 

(± 9.1) 

393.8 

(± 14.8) 

447.7 

(± 30.0) 

0.5 

(± 0.6) 

26.3 

(± 4.2) 

Mean 

(± std) 

Keyboard 
115.3 

(± 6.8) 

54.3 

(± 6.4) 

467.3 

(± 47.7) 

355.1 

(± 23.8) 

413.4 

(± 24.5) 

0.3 

(± 0.5) 

21.1 

(± 4.5) 

sEMG 
120.4 

(± 7.2) 

56.4 

(± 7.1) 

492.5 

(± 44.3) 

373.3 

(± 36.8) 

427.8 

(± 27.9) 

0.3 

(± 0.5) 

22.5 

(± 4.8) 
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forward, right turn, walking forward, left turn, walking forward, left 

turn, and walking forward were conducted successively. The 

movement sequence is consistent with the route from the initial 

position to the destination as shown in Fig. 5. To turn the robot to 

an appropriate direction, turning commands are repeated 

sufficiently because each command makes a turn by three degrees 

only. Some turning commands are sparsely distributed to adjust the 

robot’s orientations temporally. Once a “Forward” is commanded, 

the robot keeps walking forward until any command evokes. Thus, 

the forward commands are sparse over time. 

 

 

4. Conclusions 

 

The experimental results demonstrated that the proposed 

interface protocol enables people to interact with a humanoid robot 

reliably and naturally. This study chose a humanoid robot as a test-

bed. During navigation, the robot could look around and execute 

various locomotive motions based on mere limb movements of a 

user. Notably, the proposed system includes real-time visual 

feedback. Therefore, the user could sense visually the environment 

near the robot while controlling the robot movements according to 

his or her intention. Even though an erroneous movement was 

instantly commanded, the subject could modify the movement 

quickly. Our approach proposed to extend the number of classified 

intentions by incorporating with the state automation diagram 

without further classification of muscle signals.  

For simple tasks such as the cursor movement control on the 

screen,9 it has been reported that EMG-based interface is somehow 

between the mouse and the commercial interfaces in performance 

efficiency. However, for more complicated tasks such as humanoid 

navigation control, no study has evaluated the performance of 

sEMG-based interface. According to the best of our knowledge, this 

work is the first attempt to apply a sEMG-based interface 

technology to humanoid robot control. This work examined the 

feasibility of the proposed sEMG-based interface control through 

the performance comparison with the manual keyboard control. In 

the future work, we plan to develop an objective performance 

evaluation method for various interfaces during implementing 

complicated tasks. 
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Fig. 6 sEMG and NMVA profiles at the three locations on a subject’s arm and selected commands during an experiment 
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